Technical Guide of the NSD WEB-service

NON-BANKING CREDIT ORGANIZATION

CLOSED JOINT-STOCK COMPANY

NATIONAL SETTLEMENT DEPOSITORY

Technical Guide of the NSD WEB-service

Moscow, 2015
1. Introduction

The Technical Guide on the NSD WEB-service is a technical document of the National Settlement Depository (hereinafter referred to as the NSD) and describes the electronic data interchange (EDI) based on the NSD WEB-service (hereinafter referred to as the “WEB-service”).

The Technical Guide describes the WEB-service functions as well as codes and errors returned by the WEB-service.

© National Settlement Depository, 2015
Table of Contents

21.
Introduction

62.
Terms and Definitions

73.
General Data

84.
Authentication

95.
Creation of Requests to WEB-Service

106.
Document Package Interchange

106.1.
Electronic Document Package Structure

106.2.
MIME Technology

126.2.1.
Package Splitting, Receipt / Transmission

136.2.2.
Web-Service response

147.
WEB-Service Functions

147.1.
GetRests – Request for Securities Balance

147.1.1.
Input Parameters:

147.1.2.
Output Parameters:

147.1.3.
XML rests Format

157.2.
GetRestsRepo – Request of Settlement Assets’ Available Balance

157.2.1.
Input Parameters:

167.2.2.
Output Parameters:

167.2.3.
XML RepoRecord Format

177.3.
GetMarkedRests –Request of Marked Balance of Settlement Assets or Collateral

177.3.1.
Input Parameters:

177.3.2.
Output parameters:

177.3.3.
XML MarkedRepoRecord Format

197.4.
GetSUOPrices – Request of Prices of Available Balances for Securities Basket Repo for the Collateral Accounting System

197.4.1.
Input parameters:

197.4.2.
Output parameters:

197.4.3.
XML SUOPricesRecord Format

207.5.
GetRcCreditorAssets – Request of Information on Assets for Settlement Repo

207.5.1.
Input Parameters:

217.5.2.
Output Parameters:

217.5.3.
Format of XML CreditorAssetsRecord

227.6.
GetOrderState – Request of Order Status

227.6.1.
Input Parameters:

227.6.2.
Output Parameters:

237.7.
InitTransferIn - Initiation of Document Package Transfer

237.7.1.
Input Parameters:

237.7.2.
Output Parameters:

237.8.
PutPackage – Document Package Transfer

237.8.1.
Input Parameters:

247.8.2.
Output Parameters:

247.9.
GetTransferResult – Completion of Document Package Transfer

247.9.1.
Input Parameters:

247.9.2.
Output Parameters:

247.10.
GetPackageList – Receipt of Package List from NSD

247.10.1.
Input Parameters:

247.10.2.
Output Parameters:

247.10.3.
XML package_list Format

257.10.4.
XML package_list Example:

257.11.
GetPackage – Receipt of Document Package from NSD

257.11.1.
Input Parameters:

257.11.2.
Output Parameters:

257.12.
Functions of interaction with NSD repository

257.12.1.
ConvertReposDoc – request to convert repository’s messages

287.12.2.
GetMainAgreements – Request for MA, RA, PRA

307.12.3.
GetMainAgreement - request for text of Master Agreement

347.12.4.
GetMessagesSince - request for new repository messages

367.12.5.
GetMessage - request for text of Depository message

367.12.6.
GetPersonCode – check of Depository (repository) code by name of certificate owner

377.12.7.
GetRegistrySince – request for list of registered agreements of repository

397.12.8.
GetRegistryRecord - request for data of registry of repository

407.12.9.
GetRegistryChanges – request for register changes of repository

417.12.10.
GetFile – request for attached file

417.12.11.
GetRepresentativeClients –request for list of clients of PRA

427.12.12.
GetParties – request for data of participants

438.
Return Codes and Error Descriptions

459.
WEB-Service Operational Guidelines

459.1.
Connection to the WEB-Service

459.2.
Recommended CIPF

469.3.
Acceptable Operating Systems

469.4.
Certification

4610.
Examples of SOAP Requests

4610.1.
Example of a SOAP Request Without Binary Data

4710.2.
Example of a SOAP Request with Binary Data Based on the MIME Technology

4911.
Examples of Electronic Document Packages Within the NSD EDI

4911.1.
Structure of a Document Package With a Transfer Order

5011.2.
Structure of a Transit Document Package

5111.3.
Structure of a Document Package for the NSD Repository

5212.
Change List

2. Terms and Definitions

The terms used in the Technical Guide but not defined herein shall have the meaning defined by the NSD EDI Rules.

Base 64 is a reversible encoding method (with error correction) that represents data by translating it into a radix-64 representation. The method is used, for example, in emails to represent binary files in the letter body (transport layer encoding).

Canonical xml is a normal form of XML intended to allow relatively simple comparison of pairs of XML documents for equivalence.

Canonicalization is a process of converting XML text into a strictly defined canonical form. For full description of algorithms please visit http://www.w3.org/TR/xml-c14n#NoXMLDecl.

Canonicalized text - XML text that had passed through the procedure of Canonicalization

Certificate network directories (LDAP) are registrars of public key certificates of the Electronic Document Interchange Provider (separate LDPs used for qualified and non-qualified certificates.

Depository (Repository) Code is a depository or repository code assigned to a Client by the NSD.
CKVES - Certificate of key to verify an electronic signature, see the definition in Regulation EDI.

CIPF - Cryptographic Information Protection Facility

Digital Signature shall have the meaning defined by the EDI Rules.

EDI Power of Attorney is a PoA to sign electronic documents in the NSD EDI System pursuant to the NSD EDI Rules.

EDI Rules shall mean the NSD Electronic Data Interchange Rules (Appendix 1 to the Electronic Data Interchange Agreement) available on the NSD official website at http://www.nsd.ru/ru/documents/workflow/.

Hash Code shall mean the result of dataset conversion into a bit string. Hash Codes are used to generate dataset unique identifiers and yield the checksum from the data to detect errors of data transmission.

IP - Informing person. See details in Conditions for provision of repository services https://www.nsd.ru/ru/documents/rep/
Master agreement (MA) means a master agreement (an integrated agreement), stipulated in the official Order “Procedures for the maintenance of the registers of contracts concluded on the terms and conditions of the master agreement (an integrated agreement), the provision of information required for the maintenance of the said Register, and the submission of the Register of contracts concluded on the terms and conditions of the master agreement (an integrated agreement) to the Federal Authority on Financial Markets”, adopted by FFMS of Russia No. 11-68/pz-n dated 28 December 2011.

MIME (Multipurpose Internet Mail Extensions) is a mechanism to send various kinds of information in one message via Internet. Non-text data is transmitted as attachments. For the description of the MIME mechanism for the SOAP protocol please visit http://www.w3.org/TR/SOAP-attachments.

Non-Qualified Certificate is an RSA-based digital signature verification key certificate issued by a certification authority of Moscow Exchange, being non-accredited in accordance with the current legislation of the Russian Federation.
OS shall mean an operating system.
Principal Reporting Agent (PRA) is a Client or a legal entity authorized by the Client that exchange information and involved in daily operations with the Repository to perform actions stipulated by these Terms and Conditions. The Principal reporting agent shall enter into the EDI Agreement with the Repository.
Public key certificate is a certificate used to verify a digital signature. See the definition in the NSD EDI Rules.

Qualified Certificate has the meaning defined by the NSD EDI Rules. The Validata CSP-based (or CryptoPro CSP-based) digital signature verification key certificate issued by an accredited certification authority must be used in Web-service connection.

Reporting Agent (RA) is a person who has entered into an EDI Agreement and who has been designated by parties to the Master Agreement as the person responsible for providing required information to the Repository on the contracts concluded on the terms and conditions of the master agreement and required to be recorded in the Contracts Register.

RSA is a cryptographic library based on the RSA asymmetric encryption algorithm. Example: Microsoft CSP.
SOAP (Simple Object Access Protocol) is a protocol to exchange XML arbitrary messages. SOAP is a standard protocol on which web-services are based. For the description of the protocol, please visit http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

Validata CSP is a cryptographic information protection facility represented as software (a cryptographic provider) which, inter alia, supports computation and verification of digital signatures in accordance with the Russian National Standard (GOST R 34.10-2001). For more details, please visit http://www.x509.ru/vdcsp.shtml.
X509 certificate owner name – e-signature certificate owner name in format, see http://tools.ietf.org/html/rfc5280#section-4WEB-service Interface

3. General Data
The WEB-service is a channel for communication with the NSD within the Electronic Document Interchange System (EDI) and is an alternative to e-mail.

The WEB-service is realized on the Weblogic JEE-server based on SOAP 1.2 layered over HTTP S transport protocol.

A request to the WEB-service represents a SOAP object. Each request has its own input parameters (see WEB-Service Functions).
The WEB-service supports two types of interface: standard interface (on the specification of W3C) and simplified interface. The main difference between standard and simplified interface is request format. The request with standard interface has standard SOAP header. The request with simplified interface has no header – see Creation of Requests to WEB-Service.
To transmit binary files in standard interface the SOAP Attachment Feature is used. The binary package is transmitted as it is as an attachment to a file message without its text encoding on the basis of MIME (Multipurpose Internet Mail Extensions) mechanism.

The simplified interface doesn’t support MIME mechanism. In this case binary data should be converted into a string based on the Base64 algorithm and transmitted as text.
Each request to the WEB-service is signed with the Client’s Digital Signature. To stack a Digital Signature both qualifies an non-qualified public key certificates can be used depending on the type of CIPF indicated in EDI Application Form.

A WEB-service response also represents a SOAP object (See the description of output parameters for a specific function). Like a request, a response with standard interface may also contain an attachment based on the MIME (Multipurpose Internet Mail Extensions) mechanism.
Each response from the WEB-service with standard interface contains the SOAP Fault element containing specific information about the error, namely predefined code and a description. In case of success the return code is zero, and the description is “OK” – for more information, see “Web-Service response” and “Return Codes and Error Descriptions”.
Each response from the WEB-service with standard interface shall be signed by the NSD Digital Signature with CIPF used by the Participant in a relevant request.

4. Authentication

The Client shall be authenticated on the basis of its Digital Signature.
For standard interface, to avoid any inconsistency with the verification of the Digital Signature, the canonicalized message body (see the Algorithm of creating and signing requests to the WEB-service) shall be signed. A Digital Signature is extracted from Envelope/Header/Security/Signature/SignatureValue tag.
For simplified interface a concatenated parameters string shall be signed. The Digital Signature is extracted from the Sign parameter.
The name of the key certificate of the Digital Signature is used for the authentication of a Client in the following way:

· The WEB-service finds a digital for-m of the actual Power of Attorney with the name of the key certificate.
· If a depository (repository) code of the Client in the Power of Attorney is matched against the value of the PersonCode parameter of the request, the User name from the Power of Attorney is considered to be authorized user name of the Client.
If there are several signatures in the request (supported only for standard interface), the authentication shall be deemed successful if the described above check is successful at least for one signature.

In case of withdrawn or expired certificate the WEB-service can not recognize the Client and returns the code 10 (Invalid signature, the message body was changed).

If the Digital Signature can’t be verified as the certificate network directory (LDAP service of OAO Moscow Exchange) does not contain such certificate, an error with Code 100 (No user in the system corresponds to the specified certificate name…) is returned.

If the Digital Signature is successfully verified, the whole body text from the received message is extracted and canonicalized, its hash-code is calculated (digest) that will be matched versus DigestValue indicated in the message header. If they are not matched, the message body was changed and the Digital Signature is not valid. The sender will receive an error with code 9 (The Signature is not valid, the message body was changed).
5. Creation of Requests to WEB-Service

5.1. Standard interface

First a body of a SOAP request per the following algorithm, is created:

· A Body is marked with ID a reference to which is given in a message header. Therefore, a hash function will be calculated on the basis of the entire Body element rather than its fragment
· An element inserted in the Body is a name of the called function.

· Function parameters and their values will be indicated in the element of the called function (See Description of Input Parameters for Each Function) .
For example, the message Body of a request of a securities balance on account No. PI970117040D of Client ABC with the NSD will be represented in the following way:
<GetRests xmlns="http://ray-online.ndc.ru:8080/WsLouch/WslService">

<PersonCode>ABC</PersonCode>

<DepositCode>NDC000000000</DebitorCode>

<SearchPersonCode>ABC</SearchPersonCode>

<AccountCode>PI970117040D</AccountCode>

<SectionCode/>

<SecurityCode/>

</GetRests>

</soapenv:Body>

Following the creation of a message body it should be signed per the following algorithm:
1. Canocalization and hashing (digest) of a message body are called sequentially.

2. The digest together with the reference to the Body are embedded in the message header /Envelope/Header/Security/Signature/SignedInfo/Reference/DigestValue
3. After that the entire element SignedInfo is canonicalized and signed,

4. The digital signature transformed into a string per the Base64 algorithm is embedded in the message header, in the element /Envelope/Header/Security/Signature/SignatureValue.

5. If a request is signed with several Digital Signatures, for each Digital Signature a separate signature element with its DigestValue and its SignatureValue will be created in a message header, in the security element.

Below given the structure of the message header signed with two signatures:.

[image: image1.png]soapeav:Envelope

xmins:wsp it wslouchmicex com 8DBOMSLouChNSIService.
xmins:soapeav bty ischemas xmisoap orgisoapienvelops

xminsiwsse it docs.aasis-open orgiwss 2004101 oasis-200401 -wss-wssecurty-secext-1 0.xsd
xmins:wsur it dacs aasis-open orgiwss 2004101 oasis- 200401 -wss- wssecurty-tity-1 0.xs
xminsixsi it o 3. 0112001 ML Schemainstance

xsizschemal oca... i ischemas xmisoap orgisoapienvelops

Comment 3amnosox cooduera

soapenv:Header
wese:Security
soapemviactor bty iwslouch micex com 8080MSLouchiNSIService
Signature (2)

= xmins) signedinfo Q) Signaturevalue

1 hittp:iiwww w3org20 | ¥ Signedinfo
oomsnicigh

2 i Signedinfo | SignatureValue

e Comment Teno caoSugrs, koTopoe MognMcaro AN
w1 soapeuv:Body wsuld-NRDRequest

5.2. Simplified interface

Web-service request is a SOAP object. For specification of request parameters see the WEB-Service Functions Chapter.

To create a request from specified parameters please take into account the following main rules:

· A text parameter can be put in request “as is”

· An integer value shall be converted into a string as a set of digits

· A real number shall be converted into a string as a set of digits with a decimal point
· A date shall be converted into a string formatted as dd.mm.yyyy
· Binary data shall be converted into a string by using base64 algorithm

For Web-service Client authentication the Digital Signature extracted from the “Sign” parameter is used.
The “Sign” parameter shall be created as follows:
All input parameters (except the “Sign” parameter) comma separated are concatenated into a string.
Note. A comma shall be put even if a parameter value isn’t defined.
Thus obtained string should be signed by digital signature. The signature shall be converted into a string by using base64 algorithm and put as the value of the “Sign” parameter.
6. Document Package Interchange

6.1. Electronic Document Package Structure

Document packages shall be interchanged pursuant to the EDI Rules.

A binary document (data) package shall be prepared in a standard way (as a .CRY file) in accordance with the EDI Rules. The Digital Signature shall be embedded within the package and shall not be sent to the WEB-service separately. The Digital Signature to be submitted with each request in the Envelope/Header/Security/Signature/SignatureValue (for standard interface) or in the “Sign” parameter (for simplified interface) and matched versus the PersonCode parameter is a signature of a message body. The Digital Signature within the package is not be verified by the WEB-service. The package will be processed as if it was received by e-mail.

The structure of an electronic document package is described in sections “Creation of Electronic Documents in the NSD EDI System via E-mail and/or the WEB-service” and ‘Creation of Electronic Document Packages in the NSD EDI System via E-mail and/or the WEB-service” of the NSD Electronic Communication Rules (Supplement 1 to Rules of EDI NSD). For further information on transit packages, please refer to the NSD EDI System Local Workstation (Luch Software) User Manual (Section “Document Flow via Electronic Document Transit).

Structures of electronic document packages are illustrated in the Examples Section.

6.2. MIME Technology

The MIME Technology is supported only in standard Web-service interface.
A SOAP message with a binary package is constructed on the basis of the MIME technology (similar to an email message with an attachment) with two parts: a root element and a binary attachment separated from the main part with a delimiter

A message created on the basis of the MIME technology has a special structure (See http://www.w3.org/TR/SOAP-attachments
1. A general HTTP header is embedded with description of Content-Type:Multipart/Related with the following parameters:

· Type is a type of data of the root part of a message.

· Boundary is a string that separates a first part of a message from a second one with binary data.

· Start is an identifier o a message root part

2. A general header is separated from a root message with a delimiter set in the boundary.
3. A Root attribute is added to the beginning of a message: message root part ID indicated in the Start parameter is included in the Content-ID parameter

4. A message body is constructed with request parameters as described in the Section “Creation of requests to WEB-service”. A reference to an attachment in the href parameter is added to a message body.
5. A message body is canonicalized and signed as in the example above. A binary package is not added to the parameters.

6. The resulting message and the header are placed immediately after the delimiter.

7. The delimiter is placed after the Envelope tag of the root message.

8. Following the delimiter:

· A type of transmitted binary data application/zip is indicated in the parameter Content-Type.

· Message second part ID given in href of the root message body is indicated in the Content-ID parameter

· Representation of binary data during transmission: binary is indicated in the Content-Transfer-Encoding parameter.

· An attachment is given further on
Below given an illustration how to create a MIME-based SOAP request:

[image: image2.emf]SOAP запрос с вложением по технологии MIME

<!--общий HTTP заголовок с описанием разделителя частей SOAP

сообщения (MIME_boundary) и идентификатором корневой части

сообщения <MIME_EXAMPLE> -->

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

<!--ID основного SOAP сообщения -->

Content-ID:<MIME_EXAMPLE>

Envelope

Content-Type: application/zip

Content-Transfer-Encoding: binary

<!--ID вложения -->

Content-ID: <package1>

Вложение

--MIME_boundary

--MIME_boundary

--MIME_boundary

A request with an attachment is illustrated in the Section “An example of a SOAP request with a binary package based on the MIME technology”.

6.3. Package Splitting, Receipt / Transmission
If the package size exceeds 100,000 bytes, it is recommended that the package-containing binary file split into several parts to improve the stability of a date exchange process as small packages are unlikely to be requested / transmitted again. The recommended size of a package part is 100 Kb. Each part is transmitted as a separate SOAP message.

It is forbidden to split a package into parts of 54Kb or less. Therefore, if a package contains two or more parts, it is necessary to estimate so that each part exceeds 5Kb. If a package can’t be split, its size can be less than 5 Kb.
When a package is transferred by the Client to the NSD, the package shall be split by the client’s software with the parts being then merged by the WEB-service.

When a package is transferred by the NSD to the Client, the package shall be split by the WEB-service into that number of parts as requested by the Client. The parts shall then be merged by the Client’s software.

To transfer a document package to the NSD, the Client shall be required to consecutively call the following three functions:

· InitTransferIn – Initiate the transfer of a document package
· PutPackage – Transfer the document package
· GetTransferResult – Complete the transfer of the document package
To get a document package from the NSD, it will be necessary to consecutively call the following two functions:

· GetPackageList – Get the package list from the NSD
· GetPackage – Get the document package from the NSD
6.4. Web-Service response

6.4.1. Simplified interface

The Web-Service response is a SOAP object. For specification of output parameters see the WEB-Service Functions Chapter.
The last two fields of each response are:
· errorCode – return code, integer. If request is successful, return code is 0.

· errorDesc – error description. The long text in Unicode. If request is successful, error description is OK.
Error codes and descriptions are described in the Return Codes and Error Descriptions section.

The response isn’t signed.

6.4.2. Standard interface
The response structure fits the request structure. A WEB-service response with a binary package is constructed on the basis of the MIME technology in the same way as a request.
A WEB-service response contains the SOAP Fault element with specific information about the error, namely predefined code and a description.

The SOAP Fault element has the following structure:

<soapenv:Fault>

 <FaultCode>soapenv:Server</FaultCode>

 <FaultString>OnyxException</FaultString>

 <detail>

 <FaultInfo xmlns="http://wslouch.micex.com/">

 <errorCode>Error code</errorCode>

 <errorDesc>Description of error</errorDesc>

 <stackTrace>call stack</stackTrace>

 </FaultInfo>

 </detail>

</soapenv:Fault>

See “Return Codes and Error Descriptions” for more information about the Return Codes.
A WEB-service response is signed by the same type of Certificate as a request (e.g. Non-Qualified Certificate response to Non-Qualified Certificate request).

7. WEB-Service Functions (WEB-Service Methods)
7.1. General information
All functions described below use the Client authentication algorithm described in the Authentication section.

For simplified interface: each function has the “Sign” parameter as a last parameter (not described in specifications but assumed) with digital signature.
7.2. Specifications

7.2.1. GetRests – Request for Securities Balance

The function returns the balance of securities available on the Client account. If the request’s parameters do not contain deposit account, a sub-account of deposit account and a security code the balance of all securities of the securities accounts will be submitted.

The function verifies whether the Client with the PersonCode code is authorized to view the balance on the SearchPersonCode account (availability of the relevant documents) with the DepositCode depository.

7.2.1.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository Code of the Client
	Yes

	DepositCode
	12-character string
	Depository Code of the Depository where balances are requested
	No

	SearchPersonCode
	12-character string
	Depository Code of the holder of the account for which balances are requested
	No

	AccountCode
	12-character string
	Securities account number
	No

	SectionCode
	17-character string
	Code of the sub-account of the securities account
	No

	SecurityCode
	12-character string
	Security code
	No

7.2.1.2. Output Parameters:

	Parameter Name
	Type
	Description

	rests
	XML text
	The balance of securities in the Client’s account as XML text of the specific format. See XML rests Format

7.2.1.3. XML rests Format

	XML Element Name
	Description

	rests/
	Root element

	rest/
	Recurrent element. A separate element for each sub-account and security code

	section_code
	Sub-account code (as per NSD codes)

	section_type
	Sub-account type (as per NSD codes)

	section_state
	Sub-account state. Possible values:

· Open

· Close

	section_status
	Sub-account status. Possible values:

· Unlimited

· Blocked

	security_code
	Security code (as per NSD codes)

	security_name
	Security short name

	security_reg_num
	Security state registration number

	value
	The securities balance in the account (sub-account) at a time when the request is generated (i.e. including all trades executed by that moment).

Whole numbers are separated from fractions by a decimal point (.).

	/rest
	

	/rests
	

XML rests Example:

 <rests>

 <rest>

 <section_code>00XX0021130213000</section_code>

 <section_type>00</section_type>

 <section_state>open</section_state>

 <section_status>unlimited</section_status>

 <security_code>RU0001234567</security_code>

 <security_name>Облигация</security_name>

 <security_reg_num>1-02-03456-A</security_reg_num>

 <value>20</value>

 </rest>

 <rest>

…………………………..

 </rest>

 </rests>

7.2.2.
GetRestsRepo – Request of Settlement Assets’ Available Balance

The function returns the balance in the sub-account indicated that is available for securities lending as well as the value of such balance in Russian rubles. This covers only those securities that are authorized by the Bank of Russia for lending and on which no corporate action is anticipated over the next two days recorded in sub-accounts the operator of which and the account holder are one and the same person.
7.2.2.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository Code of the Client
	Yes

	AccountCode
	12-character string
	Securities account number
	No

	corrSecTypeCode
	2-character string
	Securities sub-account type
	No

7.2.2.2. Output Parameters:

	Parameter Name
	Type
	Description

	RepoRecord
	XML text
	The balance of securities available in the Client’s account as XML text of no more than 4,096 characters. See XML RepoRecord Format

7.2.2.3. XML RepoRecord Format

	XML Element Name
	Description

	rests/
	Root element

	rest/
	Recurrent element. A separate element for each sub-account and security code

	security_code
	Sub-account code (as per NSD codes)

	security_reg_num
	Security state registration number

	depo_acc_num
	Securities account number

	section_num
	Securities sub-account code (as per NSD codes)

	value
	The securities balance in the account (sub-account) at a time when the request is generated (i.e. including all trades executed by that moment).

Whole numbers are separated from fractions by a decimal point (.).

	price
	The value of the balance in Russian rubles shall be calculated as follows:

· The fair value of securities calculated by the Bank of Russia and known at the moment of the request generation moment

· Or, the market value calculated in accordance with the methodology prepared by the Federal Service for Financial Markets,
· Or, it is impossible to determine the value of any security by any methods above, 0 will be used.

Whole numbers will be separated from fractions by a decimal point (.).

	/rest
	

	/rests
	

XML RepoRecord Example:

 <rests>

 <rest>

 <security_code> RU0001234567</security_code>

 <security_reg_num>1-02-03456-A </security_reg_num>

 <depo_acc_num>PI970117040D</depo_acc_num>

 <section_num>00XX0021130213000</section_code>

 <value>20</value>

 <price>20</price>

 </rest>

 <rest>

…………………………..

 </rest>

 </rests>

7.2.3. GetMarkedRests –Request of Marked Balance of Settlement Assets or Collateral
Depending on the type of asset specified, the function returns the securities balance marked by the lender as a settlement asset or by the borrower as collateral
 in the securities account specified as well as the value of such balance in Russian rubles.

The function verifies whether the client with the PersonCode code is authorized to view the balance in the client’s account (SearchPersonCode) with the DepositCode depository (availability of appropriate documents).

7.2.3.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository Code of the Client
	Yes

	DepositCode
	12-character string
	Depository Code of the Depository from which account marked balanced are requested
	 No

	SearchPersonCode
	12-character string
	Depository Code of the holder of the account from which marked balanced are requested
	No

	AccountCode
	12-character string
	Securities account number
	No

	SectionCode
	17-character string
	Securities sub-account code
	No

	SecurityCode
	12-character string
	Securities code
	No

	ActiveType
	1-character string
	Asset type. Possible values:

BASE_ASSET – settlement asset
COLLATERAL_ASSET – collateral
	No

7.2.3.2. Output parameters:

	Parameter Name
	Type
	Description

	MarkedRepoRecord
	XML text
	The balance of marked securities available in the Client’s account as XML text of no more than 4,096 characters. See XML MarkedRepoRecord Format

7.2.3.3. XML MarkedRepoRecord Format

	XML Element Name
	Description

	rests/
	Root element

	rest/
	Recurrent element. A separate element for each sub-account and security code

	section_code
	Securities sub-account code (per NSD codes)

	section_type
	Securities sub-account type (per NSD codes)

	section_state
	Sub-account state. Possible values:

· Open

· Close

	section_status
	Sub-account status. Possible values:

· Unlimited

· Blocked

	security_code
	Security code (per NSD codes)

	security_name
	Security short name

	security_reg_num
	Security state registration number

	value
	The marked securities balance in the account (sub-account) at a time when the request is generated (i.e. including all trades executed by that moment).

Whole numbers are separated from fractions by a decimal point (.).

	rest_cost
	The value of the marked balance in Russian rubles shall be calculated as follows:

· The fair value of securities calculated by the Bank of Russia and known at the moment of the request generation moment

· Or, the market value calculated in accordance with the methodology prepared by the Federal Service for Financial Markets,

· Or, it is impossible to determine the value of any security by any methods above, 0 will be used.

Whole numbers will be separated from fractions by a decimal point (.).

	/rest
	

	/rests
	

XML MarkedRepoRecord Example:

 <rests>

 <rest>

 <section_code>00XX0021130213000</section_code>

 <section_type>00</section_type>

 <section_state>open</section_state>

 <section_status>unlimited</section_status>

 <security_code>RU0001234567</security_code>

 <security_name>Bond</security_name>

 <security_reg_num>1-02-03456-A</security_reg_num>

 <value>20</value>

 <rest_cost>20</rest_cost>

 </rest>

 <rest>

…………………………..

 </rest>

 </rests>

7.2.4. GetSUOPrices – Request of Prices of Available Balances for Securities Basket Repo for the Collateral Accounting System
The function returns an available balance of securities marked by the borrower as a collateral on all securities sub-accounts that were marked with a breakdown into accounts and sub-accounts as well as a discount and a price of one security including a discount in Rubles.
The function verifies whether the Client with the PersonCode code is authorized to view the balance on AccountCode account (availability of the relevant documents).

7.2.4.1. Input parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository Code of the Client
	Yes

	AccountCode
	12-character string
	Securities Account No
	No

	SecurityCode
	12-character string
	Security Code
	Yes

7.2.4.2. Output parameters:

	Parameter name
	Type
	Description

	MarkedRepoRecord
	XML text
	Collateral balance with discounts on the Client’s account as XML text of a special format – See XML SUOPricesRecord Format

7.2.4.3. XML SUOPricesRecord Format

	XML-element name
	Description

	assets
	Root element

	set
	Recurrent element. A separate element for each sub-account and security code.

	ga_code
	Master agreement code, a non-mandatory field

	сred_code
	Creditor code

	creditor_short_name
	Creditor short name

	depo_acc_num
	Securities account number (per NSD codes)

	section_num
	Sub-account (per NSD codes)

	security_code
	Security code (per NSD codes)

	security_name
	Security short name

	isin
	Security ISIN, a non-mandatory field

	value
	Available balance (balance marked as collateral and physically available on the sub-account and that is not frozen against basket REPO trades to be executed – See H:\ALAMEDA\Requirements \Collateral Accounting \to be developed\Requirement for SUO functions.doc) as a time of request generation (i.e. including all trades executed by the moment).

Whole numbers will be separated from fractions by a decimal point (.).

	сollats/
	

	сollateral/
	Collateral. Recurrent element.

	сollateral_code
	Сollateral code

	discount
	Discount for one security (Discount function result, see Requirement for SUO Functions.doc). Whole numbers will be separated from fractions by a decimal point (.).

	discount_price
	Price of one security including a discount (calculated as a market price (security, “yes”) * (100% - Discount)/100; Description of the Market Price Procedure given in Requirement for SUO functions.doc). Whole numbers will be separated from fractions by a decimal point (.).

	rest_discount_cost
	Balance current value including a discount (calculated as Available balance * Price of one security including discount). Whole numbers will be separated from fractions by a decimal point (.).

	disc_ca
	mark «Excluded from selection by Corporate Action», possible values: Y/N

	/сollateral
	

	/сollats
	

	/set
	

	/assets
	

 XML SUOPricesRecord Example:

 <assets>

 <set>

 <ga_code>rcbr</ga_code>

 <creditor_code>pnr</creditor_code>

 <creditor_short_name>MMM Company</creditor_short_name>
 <depo_acc_num>PI970117040D</depo_acc_num>

 <section_num>00XX0021130213000</section_num>

 <security_code>RU0001234567</security_code>

 <security_name>Bond</security_name>

 <isin>RU0123456789 </isin>

 <value>20</value>

<collats>
<сollateral>
 <сollateral_code>GCOLLATERAL</сollateral_code>

 <discount>10</discount>

 <discount_price>90</discount_price>

 <rest_discount_cost>1800</rest_discount_cost>

 <disc_ca>N</disc_ca>

</сollateral>

</collats>
 </set>

 </assets>

7.2.5. GetRcCreditorAssets – Request of Information on Assets for Settlement Repo
The function returns information on whether any Client has securities as a settlement asset at a rate charged to use an asset not exceeding the one indicated in the request.

The function verifies whether the Client with the specified code (PersonCode) is authorized to request information on a settlement asset on the CreditorCode account on behalf of DebitorCode (availability of appropriate documents).

7.2.5.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository Code of the Client
	Yes

	DebitorCode
	12-character string
	Depository Code of the Client providing a collateral
	No

	CreditorCode
	12-character string
	Depository Code of the Client providing a settlement asset
	No

	CreditorFiCode
	12-character string
	Security code
	No

	RateNoMore
	Max. 12-character string
	Cap rate (a fee for a settlement asset) that the client is prepared to pay to use the asset as a percentage of the Bank of Russia’s refinancing rate effective at the moment of the request.

Whole numbers will be separated from fractions by a decimal point (.).

	No

7.2.5.2. Output Parameters:

	Parameter Name
	Type
	Description

	CreditorAssetsRecord
	XML text
	Information on settlement assets in the form an XML text of no more than 4,096 characters. See XML CreditorAssetsRecord Format

7.2.5.3. Format of XML CreditorAssetsRecord

	XML Element Name
	Description

	assets/
	Root element

	set/
	Recurrent element. A separate element for each sub-account and security code.

	creditor_fi_code
	Security code (per NSD codes)

	creditor_fi_isin_code
	Security state registration number

	creditor_rest
	The balance of securities marked as settlement assets available on the creditor’s accounts as at the moment the request is generated.

Whole numbers are separated from fractions by a decimal point (.).

	creditor_code
	Depository (Repository) Code of the Client providing settlement assets

	creditor_short_name
	Short name of the Client providing settlement assets

	creditor_limit_price
	A limit on the client (in RUB).

Whole numbers are separated from fractions by a decimal point (.).

	creditor_limit_rest
	Limit balance (the limit on the client less the portion used) (in RUB).

Whole numbers are separated from fractions by a decimal point (.).

	creditor_rate_value
	The rate to use assets as a percentage of the Bank of Russia’s refinancing rate effective at the moment of the request.

Whole numbers are separated from fractions by a decimal point (.).

	creditor_fi_price
	Price per security (in RUB) excluding the rate.

Whole numbers are separated from fractions by a decimal point (.).

	creditor_fi_value
	Value of the limit balance (in RUB) excluding the rate.

Whole numbers are separated from fractions by a decimal point (.).

	creditor_fi_price_rate
	Price per security (in RUB) including the rate.

Whole numbers are separated from fractions by a decimal point (.).

	creditor_fi_value_rate
	Value of the limit balance (in RUB) including the rate.

Whole numbers are separated from fractions by a decimal point (.).

	/set
	

	/assets
	

XML MarkedRepoRecord Example:

 <assets>

 <set>

 <creditor_fi_code>110vozrp15</creditor_fi_code>

 <creditor_fi_isin_code>ru0009000127</creditor_fi_isin_code>

 <creditor_rest>1111</creditor_rest>

 <creditor_code>pnr</creditor_code>

 <creditor_short_name>LLC PNR</creditor_short_name>

 <creditor_limit_price>200</creditor_limit_price>

 <creditor_limit_rest>100</creditor_limit_rest>

 <creditor_rate_value>0.05</creditor_rate_value>

 <creditor_fi_price>400</creditor_fi_price>

 <creditor_fi_value>40000</creditor_fi_value>

 <creditor_fi_price_rate>420</creditor_fi_price_rate>

 <creditor_fi_value_rate>42000</creditor_fi_value_rate>

 </set>

….

 </assets>

7.2.6. GetOrderState – Request of Order Status
The function returns the status of the order by its registration number with the NSD.

7.2.6.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository (Repository) Code of the Client
	Yes

	DepositCode
	12-character string
	Depository (Repository) Code of the Depository from which account the balance is requested
	Yes

	RegNo
	16-character string
	Order’s registration number
	Yes

7.2.6.2. Output Parameters:

	Parameter Name
	Type
	Description

	orderState
	Max. 100-character string
	Order status description

7.2.7. InitTransferIn - Initiation of Document Package Transfer
The function returns the package ID for an input document package. The function initiates the transfer of a package and should be called prior the PutPackage function.
7.2.7.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository (Repository) Code of the Client
	Yes

	PackageFileName
	Max. 255-character string
	Name of the document package file to be transferred with the next function with extension (e.g. W0780001.CRY).

NB: The package should be named in accordance with the EDI Rules.

	No

7.2.7.2. Output Parameters:

	Parameter Name
	Type
	Description

	PackageId
	Max. 12-character string
	Input package ID

7.2.8. PutPackage – Document Package Transfer
The function is used to transfer document packages from a Client to the NSD. Prior to transferring, the package should be prepared, i.e. packed and signed in accordance with the EDI Rules.

Times when the function should be called equal a number of parts into which the package is split. Each time, it is necessary to transfer the total number of parts (PartsQuantity) and the sequential number of a part to be transferred (PartNumber). If there is only one part, the figure “1” shall be indicated in the fields PartNumber and PartsQuantity.

7.2.8.1. Input Parameters:

	Parameter Name
	Type
	Description
	Required?

	PersonCode
	12-character string
	Depository (Repository) Code of the Client
	Yes

	PackageId
	Max. 12-character string
	Input package ID returned by the InitTransferIn function.
	No

	PartNumber
	Integer
	Sequential number of the package file parts
	Yes

	PartsQuantity
	Integer
	Number of parts into which the package file is split
	Yes

	PackageBody
	Binary data
	Binary data representing the specified package part.
For standard interface can be transferred as MIME attachment.

For simplified interface shall be converted into a string based on the Base64 algorithm.
	No

7.2.8.2. Output Parameters:

No Output Parameters.
7.2.9. GetTransferResult – Completion of Document Package Transfer
The function initiates the assembly by the Web-service of the package parts transferred by the PutPackage function. The function verifies whether all package parts are submitted, assembles them as a single package, and returns the result indicating if the package is received successfully.

7.2.9.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository (Repository) Code of the Client
	Yes

	PackageId
	Max. 12-character string
	Input package ID returned by the InitTransferIn function.
	Yes

7.2.9.2. Output Parameters:

No Output Parameters.
7.2.10. GetPackageList – Receipt of Package List from NSD
The function returns a list of document packages ready to be sent to the Client as of the date specified.

7.2.10.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository (Repository) Code of the Client
	Yes

	Date
	Date
	Date in the dd.mm.yyyy format as of which the list of packages ready to be sent is requested
	No

	
	
	
	

7.2.10.2. Output Parameters:

	Parameter Name
	Type
	Description

	package_list
	XML text
	Information on packages ready to be sent in the form of XML text of a specified format. See XML package_list Format

7.2.10.3. XML package_list Format

	XML Element
	Description

	package_list/
	Root element

	package/
	Recurrent unit. A separate unit for each package

	id
	Package ID

	name
	Package file name

	size
	Package size (in bytes)

	hash
	Package Hash Code generated by the VCERT_HashFile function of crypto-provider «Validata CSP»

	/package_list
	

	/package
	

7.2.10.4. XML package_list Example:

 <package_list>

 <package>

 <id>463782</id>

 <name>F2816962.XML</name>

 <size>1100</size>

 <hash>0100000011110100001</hash>

 </packagе>

….

 </package_list>

7.2.11. GetPackage – Receipt of Document Package from NSD
The function returns the requested document package entirely or split into parts. The number of parts into which the package is to be split is defined by the WEB-service user which will receive the package.

The GetPackage function should be called for each part of the package.

7.2.11.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository (Repository) Code of the Client
	Yes

	PackageId
	Max. 12-character string
	Output package ID returned by the GetPackageList function – receipt of the list of packages from the NSD
	No

	PartNumber
	Integer
	Sequential number of the package file part
	Yes

	PartsQuantity
	Integer
	Number of parts into which the package file is split
	Yes

7.2.11.2. Output Parameters:

	Parameter Name
	Type
	Description

	PackageBody
	Binary data
	Binary data representing the specified package part.

For standard interface can be transferred as MIME attachment.

For simplified interface shall be converted into a string based on the Base64 algorithm.

7.2.12. Functions of interaction with NSD repository
7.2.12.1. ConvertReposDoc – request to convert repository’s messages

The function converts NSD repository messages from the old format into FpML (Financial Products Markup Language) and vice versa, and also from a text file of CSV format (comma-separated values) into FpML and vice versa in accordance with ConvertMode value.

ZIP files received and transmitted by this function are not NSD EDI packages, are not encrypted and do not contain Digital Signature.

7.2.12.1.1. Input Parameters:

	Parameter Name
	Type
	Description
	Mandatory?

	PersonCode
	12-character string
	Depository Code of the client
	Yes

	ConvertMode
	6-character string
	Message converting mode. Permitted values:

F1_F2 – from the old format into FpML

F2_F1 – from FpML into the old format

CSV_F2 – from CSV into FpML

F2_CSV – from FpML into CSV
	No

	PackageBody
	Binary data transmitted on the basis of the MIME technology as an attachment to a message
	Binary data as a ZIP archive with files to be converted. The package is not signed and encrypted. Files within the archive are not signed and encrypted.
	No

7.2.12.1.2. Output parameters:

	OutputPackage
	Binary data transmitted on the basis of the MIME technology as an attachment to a message
	A binary package as a ZIP archive with resulting files. It contains the following files:

· report.xml – report XML file – See Format of report.xml,

· logview.xsl – stylesheet language file to represent the report’s XML-file in the browser,

· one or several resulting message files.

The package is not signed and encrypted. Files within the package are not signed and encrypted.

7.2.12.1.3. Format of report.xml

	 XML-element name
	Description

	report/
	Root element

	date
	Date and time of report generation in the format: year-month- date hour-minutes-seconds

	jobs/
	Recurrent unit. A list of processing jobs

	job/
	Beginning of a unit for a certain job with attribute “result” (success and failure)

	input/
	Recurrent unit. Input file description

	file
	Input file name

	/input
	

	output/
	Recurrent element. Output file description

	file
	Output file name

	/output
	

	messages/
	Unit of messages and operational errors generated during the processing

	warning
	Non-mandatory field. Text of a message with attribute “category” (“Pre-validation” or “Post-validation”)

	еrror
	Non-mandatory field. Text of a message with attribute “category” (“Pre-validation” or “Post-validation”)

	/messages
	

	exception/
	Non-mandatory unit of exceptions that are not provided by the normal conversion mode

	message
	Error message

	type
	Exception type

	stacktrace
	Call stack

	innerexception/
	Non-mandatory unit of inserted exceptions

	message
	Error message

	type
	Exception type

	stacktrace
	Call stack

	/innerexception
	

	/exception
	

	/job
	

	/jobs
	

	/report
	

Report.xml Example:

<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet href="logview.xsl" title="LogView" type="text/xsl"?>
<report xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="rconverter">
<!—Date of report generation -->
<date>2013-05-15T13:12:13</date>

<!—List of processing jobs -->
<jobs>

<!--Job №1, result – success -->
<job result="success">

<!—Input file -->
<input>

<file>RF003.XMLl</file>
<file>RF008.XML</file>
</input>

<!—Resulting file (one or more) -->
<output>
<file>CM041.xml</file>
</output>

<!—Messages generation during processing -->
<messages>

<!-- Warning -->
<warning category="Pre-validation ">Warning message text</warning>
<!-- Warning -->
<warning category="Post-validation ">Warning message text</warning>
</messages>
</job>

<!-- Job №2, result - failure -->
<job result="failure">

<!—Input file -->
<input>
<file>RF010.XML </file>
</input>
<!-- Resulting file (one or more) -->
<output>
<!—No files recorded -->
<empty />
</output>
<!-- Messages generation during processing -->
<messages>
<!-- Warning -->
<warning category="Pre-validation ">Warning message text</warning>
<!-- Error -->
<error category="Post-validation ">Error message text</error>
</messages>
<!—Exceptions generated during processing -->
<exception>
<!—Error message -->
<message>Exception message</message>
<!—Exception type -->
<type>System.Exception</type>
<!—Call stack -->
<stackTrace>Stack trace</stackTrace>
<!—Inner exception (may be missing) -->
<innerException>

<!—Error message -->
<message>Exception message</message>
<!—Exception type -->
<type>System.Exception</type>

<!—Call stack -->
<stackTrace>Stack trace</stackTrace>
<!—Inner exception (missing in this case) -->
</innerException>
</exception>
</job>
</jobs>
</report>

7.2.12.2. GetMainAgreements – Request for MA, RA, PRA
The function returns the list of Master Agreements and Reporting Agents appointed by the parties to the Master Agreement
Parameter PersonCode passes depository (repository) client code for which it is returned a list of MA, RA, PRA
7.2.12.2.4. Input parameters
	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) Client Code
	Yes

7.2.12.2.5. Output parameters
	Parameter name
	Type
	Description

	MasterAgreements
	Text in xml format
	Information on Master agreements in the form of text in XML-format see Format of MasterAgreements.xml

7.2.12.2.6. Format of MasterAgreements.xml
	 Xml-element name
	Description

	masterAgreements/
	Root element

	masterAgreement/
	Recurrent unit. MA with attribute: id - repository code of MA

	version
	xsd version

	regDate
	Date of registration of the agreement (i.e. the date of entry of agreement to journal and of assigning a number)

	matchMethod
	The method of verification of information on transactions

	party1
	Repository code of 1st party on the MA.

	party1Name
	Full name of 1st party on the MA

	party2
	Repository code of 2nd party on the MA

	party2Name
	Full name of 2nd party on the MA

	representative1
	PRA repository code of 1st party on the MA

	representative2
	PRA repository code of 2nd party on the MA

	anketStatus
	Current status of MA

	statusDate
	Date of assigning current status.

	informator/
	Recurrent unit. Informing Person attribute: id - repository code of Informing Person

	side
	Party #. Available values : Party1, Party2, all

	role
	 Role of Informing Person

	/informator
	

	/masterAgreement
	

	/masterAgreements
	

Example of XML MasterAgreements

<masterAgreements>

<masterAgreement id='MA0000000362'>

<version>3.5</version>

<regDate>2012-04-05T21:08:55</regDate>

<matchMethod>MXME</matchMethod>

<party1>P000000000111</party1>

<party1Name>НКО ЗАО НРД</party1Name>

<party2>P000000000222</party2>

<party2Name>АКБ "Ярмарочный Банк"</party2Name>

<representative1>P000000000333</representative1>

<representative2>P000000000444</representative2>

<anketStatus>DONE</anketStatus>

<statusDate>2012-04-08T21:08:55</statusDate>

<informator id='P000000000555'>

<side>Party1</side>

<role>SWAP</role>

</informator>

<informator id='P000000000553'>

<side>Party2</side>

<role>SWAP</role>

</informator>

<informator id='P000000000558'>

<side>all</side>

<role>ALLD</role>

</informator>

 <!-- more <informator/> blocks -->

</masterAgreement>

 <!-- more <masterAgreement/> blocks -->

</masterAgreements>

7.2.12.3. GetMainAgreement - request for text of Master Agreement
The function returns the text of the Master Agreement in xml format by its identifier
7.2.12.3.7. Input parameters
	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) Client Code
	Yes

	MaId
	12 character string
	 MA ID
	Yes

7.2.12.3.8. Output parameters

	Parameter name
	Type
	Description

	MasterAgreement
	Text in xml format
	MA as text in XML format - see Format of MasterAgreement.xml

7.2.12.3.9. Format of MasterAgreement.xml
	Xml element name
	Description

	registeredInformation/
	Root element

	asOfDate
	Date of last update

	trade/
	

	tradeHeader/
	

	partyTradeIdentifier/
	Recurrent unit. Parties to the transaction

	partyReference
	Name of the party on the MA with the attribute:

href = "<Party name>"

	tradeId
	Repository code of party

	/partyTradeIdentifier
	

	partyTradeInformation/
	Recurrent unit. Information on the parties of MA

	reportingRegime/
	

	name
	Name of regulative mode of reporting

	/reportingRegime
	

	/partyTradeInformation
	

	tradeDate
	Trade date

	/tradeHeader
	

	masterAgreementTerms/
	

	masterAgreementType
	Type of MA

	masterAgreementVersion
	Version of MA

	masterAgreementConfirmation
	Confirmation code of MA

	masterAgreementPartiesRelation/
	

	party1BasedReportingParty/
	Party 1 on given MA with attribute id= "<ID of party>"

	partyId
	Repository code of party 1 on the MA

	partyName
	Name of the party 1

	/party1BasedReportingParty
	

	party2BasedReportingParty/
	Party 2 on given MA with attribute id= "<ID of party >"

	partyId
	Repository code of party 2 on the MA

	partyName
	Name of the party 2

	/party2BasedReportingParty
	

	masterAgreementReportingParty/
	

	masterAgreementParty
	Name of informing party

	reportingType
	Type of informing

	reportingParty/
	Informing Party with attribute id= "<ID of party>"

	partyId
	Repository code of informing party

	partyName
	Name of informing party

	/reportingParty
	

	/masterAgreementReportingParty
	

	/masterAgreementPartiesRelation
	

	servicesPayer
	Sign of payment

	legalNoteRus
	MA text in Russian

	legalNoteEn
	MA text in English

	/masterAgreementTerms
	

	/trade
	

	party/
	The Party on this MA with attribute id= "<ID of party>". Recurrent unit.

	partyId
	Repository code of party on the MA

	partyName
	Name of the party

	/party
	

	/registeredInformation
	

 XML MasterAgreements example
<nsdext:registeredInformation actualBuild="5" fpmlVersion="5-4"

 xmlns="http://www.fpml.org/FpML-5/recordkeeping"

 xmlns:fpmlext="http://www.fpml.org/FpML-5/ext"

 xmlns:nsdext="http://www.fpml.org/FpML-5/recordkeeping/nsd-ext"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.fpml.org/FpML-5/recordkeeping fpml-recordkeeping-merged-schema.xsd http://www.fpml.org/FpML-5/recordkeeping/nsd-ext nsd-ext-merged-schema.xsd">

 <asOfDate>2014-04-22</asOfDate>

 <trade>

 <tradeHeader>

 <partyTradeIdentifier>

 <partyReference href="TradeRepository"/>

 <tradeId>MA0000047366</tradeId>

 </partyTradeIdentifier>

 <partyTradeIdentifier>

 <partyReference href="Party1"/>

 <tradeId>wrkTest</tradeId>

 </partyTradeIdentifier>

 <partyTradeIdentifier>

 <partyReference href="Party2"/>

 <tradeId>q</tradeId>

 </partyTradeIdentifier>

 <partyTradeInformation>

 <partyReference href="TradeRepository"/>

 <reportingRegime>

 <name>RussianFederation</name>

 </reportingRegime>

 </partyTradeInformation>

 <tradeDate>2014-04-22</tradeDate>

 </tradeHeader>

 <nsdext:masterAgreementTerms>

 <nsdext:masterAgreementType>EEIPower</nsdext:masterAgreementType>

 <nsdext:masterAgreementVersion>1994</nsdext:masterAgreementVersion>

 <nsdext:masterAgreementConfirmation>MXME</nsdext:masterAgreementConfirmation>

 <nsdext:masterAgreementPartiesRelation>

 <nsdext:party1BasedReportingParty id="Party1BasedReportingParty">

 <partyId>VRKITGLOBAL3</partyId>

 <partyName>Test client LK 3</partyName>

 </nsdext:party1BasedReportingParty>

 <nsdext:party2BasedReportingParty id="Party2BasedReportingParty">

 <partyId>VRKITGLOBAL4</partyId>

 <partyName>Test client LK 4</partyName>

 </nsdext:party2BasedReportingParty>

 <nsdext:masterAgreementReportingParty>

 <nsdext:masterAgreementParty>Party1</nsdext:masterAgreementParty>

 <nsdext:reportingType>commoditySwap</nsdext:reportingType>

 <nsdext:reportingParty id="ReportingParty1">

 <partyId>VRKITGLOBAL3</partyId>

 <partyName>Test client LK 3</partyName>

 </nsdext:reportingParty>

 </nsdext:masterAgreementReportingParty>

 <nsdext:masterAgreementReportingParty>

 <nsdext:masterAgreementParty>Party2</nsdext:masterAgreementParty>

 <nsdext:reportingType>ALLD</nsdext:reportingType>

 <nsdext:reportingParty id="ReportingParty2">

 <partyId>VRKITGLOBAL4</partyId>

 <partyName>Test client LK 4</partyName>

 </nsdext:reportingParty>

 </nsdext:masterAgreementReportingParty>

 </nsdext:masterAgreementPartiesRelation>

 <nsdext:servicesPayer>all</nsdext:servicesPayer>

 <nsdext:legalNoteRus>При подаче Анкеты генерального соглашения для первичной регистрации Сторона Генерального соглашения в соответствии со статьей 428 Гражданского кодекса Российской Федерации полностью и безусловно присоединяется, в отношении Генерального соглашения, указанного в настоящей Анкете, к Условиям оказания репозитарных услуг НКО ЗАО НРД, опубликованным в соответствующем разделе на официальном сайте Репозитария. При подаче Анкеты генерального соглашения для внесения изменений в условия Генерального соглашения Сторона Генерального соглашения вносит изменения в условия Генерального соглашения, указанного в настоящей Анкете, сведения о котором были внесены в реестр договоров Репозитария на основании ранее поданной Анкеты генерального соглашения.</nsdext:legalNoteRus>

 <nsdext:legalNoteEn>By submitting the Master Agreement Reporting Form for primary registration and pursuant to Article 428 of the Civil Code of the Russian Federation the Party to the Master Agreement shall in full and unconditionally comply with the Terms and Conditions for Provision of Repository Services by the NSD available at official repository web-site. By submitting the Master Agreement Reporting Form to make changes to terms and conditions of the Master Agreement the Party to the Master Agreement shall amend the Master Agreement indicated in this Reporting Form and added to the registry of the Repository on the basis of the Master Agreement Reporting Form sent earlier.</nsdext:legalNoteEn>

 </nsdext:masterAgreementTerms>

 </trade>

 <party id="TradeRepository">

 <partyId>NDC000000000</partyId>

 <partyName>NSD </partyName>

 </party>

 <party id="Party1">

 <partyId>VRKITGLOBAL3</partyId>

 <partyName>Test client LK 3</partyName>

 </party>

 <party id="Party2">

 <partyId>VRKITGLOBAL4</partyId>

 <partyName>Test client LK 4</partyName>

 </party>

</nsdext:registeredInformation>
7.2.12.4. GetMessagesSince - request for new repository messages
Function to communicate with the repository NSD. It returns a list of message identifiers of Repository, incoming and outgoing, starting with message with identifier Since (i.e., all identifiers greater than or equal Since). Parameter PersonCode passes Depository (repository) client code, for which is needed to return the list.
7.2.12.4.10. Number of records downloaded can be restricted by the number MaxCount.
7.2.12.4.11. Input parameters
	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) Client Code
	Yes

	Since
	Integer
	Identifier starting from which registry entries must be downloaded. If it is not specified, all records are returned.
	No

	MaxCount
	Integer
	Maximum number of records downloaded
	No

	IsIn
	 Flag
	Ask for incoming or outgoing: true - incoming, false – outgoing
	No

7.2.12.4.12. Output parameters
	Parameter name
	Type
	Description

	updates
	Text in xml format
	Information on new messages in format xml – see Format of updates.xml

7.2.12.4.13. Format of updates.xml

	Xml element name
	Description

	updates/
	· Root element with attributes: lastLoadedId - ID of the last downloaded message remainingRecords – the number of remaining messages

	Message/
	Recurrent unit containing a description of one of the new messages with attribute: Id - Message ID

	time
	Time of creating a message

	type
	Message type

	correlationId
	Correlation label

	maId
	Identifier of MA, in which the transaction took place.

	party1
	Repository code of party 1 of MA

	party2
	Repository code of party 2 of MA

	partyTradeIdentifier1
	Transaction ID of party 1

	partyTradeIdentifier2
	Transaction ID of party 2

	tradeIdentifier
	Transaction ID

	template
	Name of tag with economic information

	fileId
	Id of the scanned document attached to the message (if any).

	/Message
	

	/updates
	

XML updates example
<updates isIn='true' partyId='P000000000111' lastLoadedId='124' remainingRecords='100'>

 <message id='123'>

 <time>2013-04-05T21:08:55</time>

 <type>RF014ED</type>

 <correlationId>[a]-[b]-[c]</correlationId>

<masterAgreementId>123</masterAgreementId>

<sender>rep</sender>

<reciver>P000000000111</reciver>

<party1>P000000000111</party1>

<party2>P000000000333</party2>

</message>

 <message id='124'>

 <time>2013-04-05T21:08:57</time>

 <type>RF014</type>

 <correlationId>[a]-[b]-[c]</correlationId>

<masterAgreementId>321</masterAgreementId>

<sender>P000000000111</sender>

<reciver>rep</reciver>

<party1>P000000000111</party1>

<party2>P000000000222</party2>

<fileId>5555</fileId>

 </message>

</updates>

7.2.12.5. GetMessage - request for text of Depository message
Function to interact with NSD repository. It returns a text message with the specified identifier for the client PersonCode.
7.2.12.5.14. Input parameters

	Parameter name
	 Type
	 Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repositary) Client Code
	Yes

	id
	Integer
	Identifier of the requested message.
	Yes

	isIn
	 Flag
	Incoming or outgoing message: true - incoming, false – outgoing
	Yes

7.2.12.5.15. Output parameters
	Parameter name
	Type
	Description

	message
	Text in xml-format
	Text of message – see. Format XML Message.xml

7.2.12.5.16. Format XML Message.xml

	Xml element name
	Description

	message/
	 The body of message. Root element attribute: Id - Message ID

	/message
	

Message.xml example
<message isIn='true' id='123'>

 <nonpublicExecutionReport>

 ...

 </nonpublicExecutionReport>

</message>

7.2.12.6. GetPersonCode – check of Depository (repository) code by name of certificate owner

The function checks whether the specified certificate is related to the specified depository (repository) code.

If it is not specified any of the input parameters, it is returned an error code 10.

7.2.12.6.17. Input parameters:

	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) code of depositor
	Yes

	X509Name
	255 character string
	Name of the owner of certificate in format X.509, for which it is needed to check Depository (repository) code
	No

7.2.12.6.18. Output parameters:

	Parameter name
	Type
	Description

	PersonCode
	12 character string
	Depository (repository) depositor code corresponding to the name of the certificate owner

7.2.12.7. GetRegistrySince – request for list of registered agreements of repository
Function to interact with NSD repository. It returns a list of registry entries, i.e. all registered agreements, starting with record with identifier Since (i.e., all identifiers greater than or equal value Since, if this parameter is given), for a given Depository (repository) code

7.2.12.7.19. Number of records downloaded, can be restricted by the number MaxCount.
7.2.12.7.20. Input parameters:

	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) Client code
	Yes

	Type
	1 character string
	Type of downloaded data, valid values:
C – agreement download
T – download of Transfer and Execution
MV - download of registered questionnaires
	No

	since
	Integer
	Identifier from which it is necessary to download registry entries.
	No

	maxCount
	Integer
	Maximum number of records uploaded
	No

7.2.12.7.21. Output parameters
	 Parameter name
	 Type
	 Description

	registry
	Text in xml format
	Information on entries in the register of repository starting with since in format xml – see. Format of registry.xml

7.2.12.7.22. Format of registry.xml

	 Xml element name
	 Description

	registry/
	 Root element with attributes:
lastLoadedId – identifier of last loaded record

remainingRecords - number of remaining records

	record/
	Recurrent unit. Separate entry in the register with the attributes:

id- id of DB record
code- repository code of entry

	masterAgreementId
	Identifier of the Master agreement, under which the deal was concluded, to which the entry corresponds.

	version
	xsd version

	contractType
	Type of agreement

	statusDate
	Date of assigning current status

	anketStatus
	Status of questionnaire

	statusCode
	status of execution of agreement

	regDate
	Date of registration of an agreement (of entering into journal and assigning a number)

	recordHistory/
	Recurrent unit. Single event in the history of record with attribute: Id - Event identifier

	createDate
	Date and time of registration

	statusDate
	Date of assigning of current status

	anketStatus
	Status of questionnaire

	recordStatus
	State of entry: N - new (not confirmed), A - active (confirmed to date), D - archived

	msgAction
	Type of registration activities: REGI - registration, RERE-change, DERI - cancellation

	operDay
	Operating day of record registration

	Xml
	Body of agreement in xml format

	/recordHistory
	

	/record
	

	/registry
	

Example of registry.xml

<registry partyId='P000000000111' lastLoadedId="123" remainingRecords="100">

<record id="250" code="C00000250">

<masterAgreementId>MA102030</masterAgreementId>

<party1>PARTY00001</party1>

<party2>PARTY00002</party2>

<contractRegNo>DS0000000609</contractRegNo>

<version>3.5</version>

<contractType>REPO</contractType>

<statusDate>2012-05-01</statusDate>

<anketStatus>DONE</anketStatus>

<regDate>2012-01-01</regDate>

<recordHistory id="250">

<createDate>2012-10-10</createDate>

<statusDate>2012-11-11</statusDate>

<anketStatus>DONE</anketStatus>

<eventDate>2012-12-12</eventDate>

<deregistrationDate></deregistrationDate>

<scanChecked>Y</scanChecked>

<recordStatus>A</recordStatus>

<msgDate>2012-11-11</msgDate>

<matchFieldSet>FULL</matchFieldSet>

<msgAction>REGI</msgAction>

<operDay>2012-11-11</operDay>

</recordHistory>

<!-- more <recordHistory /> blocks -->

</record>

<!-- more <record /> blocks -->

</registry>

7.2.12.8. GetRegistryRecord - request for data of registry of repository
Function to interact with NSD repository. It returns full information on the selected registry entry for the client PersonCode.
7.2.12.8.23. Input parameters
	Parameter name
	Type
	Description
	Mandatory?

	Type
	1 character string
	Types of downloaded data, valid values:

C – agreement download

T – download of Transfer and Execution
MV - content of registered questionnaire download
	Yes

	PersonCode
	12 character string
	Depository (repository) client code
	Yes

	id
	Integer
	Identifier of the requested entry.
	No

7.2.12.8.24. Output parameters
	Parameter name
	Type
	Description

	record
	Text in xml format
	Entry in the registry – see Format record.xml

7.2.12.8.25. Format record.xml

	 Xml element name
	 Description

	record/
	 Root element with attribute:

Id - entry identifier

	/record
	

Пример record.xml

<record id='123'>

 <trade>

 ...

 </trade>

</record>

7.2.12.9. GetRegistryChanges – request for register changes of repository
Function to communicate with the NSD repository. Returns a list of registry entries, ie all registered agreements, starting with record identifier Since (i.e. all identifiers greater than or equal Since, if this parameter is set), for a given Depository (repository) code.

Number of records downloaded, can be restricted by the number MaxCount
7.2.12.9.26. Input parameters
	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) Client Code
	Yes

	Type
	1 character string
	Types of downloaded data, valid values​​:

C – agreement download

T – download of Transfer and Execution
	No

	since
	Integer
	Identifier from which it is necessary to download registry entries.
	No

	maxCount
	 Integer
	Maximum number of returned changes
	No

7.2.12.9.27. Output parameters
	Parameter name
	Type
	Description

	changes
	xml
	Information on new entries in the register repository – see Format of changes.xml

7.2.12.9.28. Format of changes.xml

	Xml element name
	Description

	changes/
	Root element with attributes:

lastChangeDate – time of last loaded change
remainingRecords - number of remaining records

	change/
	Element of change in the registry entry with attribute:
Id -agreement identifier

	statusDate
	Date of assigning of current status

	anketStatus
	Status of questionnaire

	statusCode
	Status of execution of agreement

	historyChange/
	Element of changes in entry of history with attribute: Id - identifier of change

	recordStatus
	Status of entry: N - new (not confirmed), A - active (confirmed), D - archived

	/historyChange
	

	/change
	

	/changes
	

Example of changes.xml

<changes partyId="PARTY0001" lastChangeDate="2012-10-10 11-10-00" remainingCount="100">

<change id="100">

 <statusDate>2012-11-11</statusDate>

 <anketStatus>DONE</anketStatus>

<historyChange id="789">

<statusDate>2012-11-11</statusDate>

<anketStatus>DONE</anketStatus>

<recordStatus>A</recordStatus>

</historyChange>

<!-- more <historyChange/> blocks -->

</change>

<!-- more <change /> blocks -->

</changes>

7.2.12.10. GetFile – request for attached file
Function to interact with NSD repository. It returns a binary attachment file (for example, a scanned copy of agreement) by entry identifier for the Client PersonCode.

7.2.12.10.29. Input parameters
	 Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) client code
	Yes

	id
	Integer
	Identifier of the requested entry.
	Yes

7.2.12.10.30. Output parameters
	Parameter name
	Type
	Description

	FILE
	Binary date
	File of attachment
For standard interface can be transmitted based on the MIME technology as an attachment to the message.

For simplified interface shall be converted into a string based on the Base64 algorithm.

7.2.12.11. GetRepresentativeClients –request for list of clients of PRA
Function to interact with NSD repository. It returns a list of PersonCode of PRA.

7.2.12.11.31. Input parameters
	 Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) client code
	Yes

7.2.12.11.32. Output parameters
	 Parameter name
	Type
	Description

	registry
	Text in xml format
	Information on clients of PRA

7.2.12.11.33. Format of registry.xml

	Xml element name
	Description

	clients/
	Root element

	client/
	Client

	code
	Repository client code

	fullName
	Client name

	/client
	

	/clients
	

Example of XML registry

<clients partyId='P000000000111' >

<client>MC0082700000</client>

<client>MC0062700000</client>

 <!-- more <client/> blocks -->

</clients>

7.2.12.12. GetParties – request for data of participants
Function to interact with NSD repository. It returns information on PersonCode.

7.2.12.12.34. Input parameters
	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) client code
	Yes

7.2.12.12.35. Output parameters
	Parameter name
	Type
	Description

	registry
	Text in xml format
	Information on counterparties

7.2.12.12.36. Format of registry.xml

	Xml element name
	Description

	parties/
	Root element

	party/
	Separate participant

	code
	Repository client code

	fullName
	Full text client name

	isKO
	Is the participant a credit institution?

	isResident
	Is the participant a resident?

	inn
	Taxpayer Identification Number of participant

	/party
	

	/parties
	

7.2.12.13. GetInvoiceList – request for list of Invoices in PDF format
Function to communicate with the NSD repository. Returns a list of invoices issued for NSD Client or a person under the wardship of NSD Client for repository service.
To restrict the list of invoices by billing date define DateFrom and/or DateTo parameters. Defining only the start date will select invoices on and after the selected date. Defining only the end date will select invoices on or before the selected date. Empty DateFrom and DateTo parameters will select all invoices.
The default value of SearchMode parameter is 0 (all accounts).

7.2.12.13.37. Input parameters:

	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) client code
	Yes

	SearchMode
	Integer
	What invoices to be included:
0 – both NSD Client and person under the wardship of NSD Client invoices

1 – only person under the wardship of NSD Client invoices

2 – only NSD Client invoices

	No

	DateFrom
	Date
	Start date of invoices list
	No

	DateTo
	Date
	End date of invoices list
	No

7.2.12.13.38. Output parameters:

	Parameter name
	Type
	Description

	InvoiceList
	Text in xml format
	List of invoices – see Format of XML Invoice List

7.2.12.13.39. Format of XML Invoice List
	Xml element name
	Description

	Invoices/
	Root element

	invoice/
	Recurrent unit

	invoice_date
	Date of invoice

	invoice_num
	Invoice unique identifier

	invoice_type
	Invoice type

	name_rus
	Invoice name in Russian

	name_eng
	Invoice name in English

	/invoice
	

	/invoices
	

7.2.12.14. GetPDFInvoice – request for invoice in PDF format
Function to communicate with the NSD repository. Returns the Invoice in the PDF format with the “Invoice unique identifier” returned by the GetInvoiceList function.
7.2.12.14.40. Input parameters:

	Parameter name
	Type
	Description
	Mandatory?

	PersonCode
	12 character string
	Depository (repository) client code
	Yes

	InvoiceNum
	Number
	Invoice unique identifier
	Yes

7.2.12.14.41. Output parameters:

	Parameter name
	Type
	Description

	PDFInvoice
	Binary data
	Binary data representing the PDF Invoice.

For standard interface can be transmitted based on the MIME technology as an attachment to the message.

For simplified interface shall be converted into a string based on the Base64 algorithm.

8. Return Codes and Error Descriptions

	Return Code
	Error Description

	0
	ОК

	10
	Invalid signature, the message body was changed

	11
	The user’s status other than “Active”

	12
	The user not authorized to access to the Web-channel

	13
	The system is under maintenance

	14
	The user does not have a valid Power of Attorney to sign electronic documents within the NSD EDI

	20
	Invalid client code format

	21
	Date parsing error: …

	22
	The … parameter should be filled in

	23
	The … parameter should be numeric

	24
	Invalid depository’s code format: …

	25
	Invalid recipient’s account number format: …

	26
	Invalid sub-account number format: …

	27
	Invalid security code format: …

	28
	The maximum possible length of the field (…) is overrun (… characters are transferred)

	29
	Invalid asset type format: …

	30
	Invalid recipient’s sub-account type format: …

	31
	Invalid rate format: …

	32
	Depositor’s invalid depository code format: …

	33
	Creditor’s invalid depository code format: …

	98
	No access from the internal IP permitted to an external user

	99
	No access from the external IP permitted to an internal user

	100
	The certificate name … does not match any user in the system

	101
	The certificate name … matches more than one user of the client …

	102
	The certificate name … matches more than one user of clients other than the client …, and does not match any user of the client indicated

	103
	The depositor … not found in the depository

	104
	The account number … is not found in the depository … for the depositor …

	105
	The account … closed

	106
	The sub-account number … on the account …not found in the depository … for the depositor …

	107
	The sub-account … closed

	108
	The depository … not found

	109
	The user … is not found in the depository NDC000000000

	200
	No trade with registration number … in the depository …

	300
	Previous actions of the file transfer initiated with a different signature

	301
	No records of the package with number … found

	302
	Previous actions of the file transfer operation were initiated with a different number of file parts indicated

	303
	The file part number (…) is greater than the total number of file parts (…)

	304
	The file part with number … already received

	305
	The file part number (…) should be greater than zero

	306
	Not all messages available on the server. The final assembly can’t be performed.

	307
	The PutPackage function not called

	402
	The output file with number … is not found

	403
	The entry with number … in the detail table is found

	404
	An excessively small size of a file part (…) requested. The minimum permissible part size is 5,000 bytes.

	405
	The database is currently blocked. Please try again later.

	500
	Conversion service is currently unavailable. Try to make the request later.

	501
	Error of converting from CSV to FpML. Invalid CSV.

	502
	Error of converting from FpML to CSV. Invalid FpML.

	503
	Error of converting from the old format to FpML. Incorrect format of the source file.

	504
	Error of converting from FpML to the old format. Invalid FpML.

	600
	Specified canonicalization algorithm is not supported ...

	601
	The resulting hash value of the message body is not true!

	602
	Wrong format of the SOAP header of request

	603
	SOAP request header contains no block \ "Security \"

	604
	Failed to determine the actual type of the data returned by the method ...

	605
	Received zero-length file

	606
	In the soap-request there was found a link to a non-existent mime-attachment

	607
	When processing of attachment an error occurred. Refer to developers.

	1000

1001

-1
	A server error …. Please try again in a couple of minutes. If the error persists, please contact the support team.

9. WEB-Service Operational Guidelines
9.1. Connection to the WEB-Service
The WEB-service interface described above is already implemented in NSD’s Luch software, menu item “On-line”. Please refer to the NSD EDI System Local Interface (Luch Software) User Manual available on the NSD website at http://www.nsd.ru/ru/workflow/system/programs/.

Additionally, all above processes can be called from any client’s software in any programming language and working on Windows OS. The restriction on the OS is determined by permissible CIPF the list of which (along with the list of permissible Windows versions) is given below. The WEB-service cannot be accessed without CIPF.

An EDI Participant is connected to the WEB-service by the NSD by default following the execution of an Electronic Data Interchange Agreement between the NSD and the EDI Participant subject to the EDI Participant compliant with terms and conditions to connect to the NSD EDI System (clause 2.5 of the NSD Electronic Communication Rules available at https://www.nsd.ru/ru/documents/workflow).

The Client may use any software developed
 by an EDI Participant or a third party in addition to Luch software to get an access the WEB-service.

The NSD WEB-service is accessible at the URL-address indicated in the NSD EDI Application Form via the NSD official website, Page “Documents / EDI Documents”.
Addresses to connect to the Web-service are also given in the document "Instructions for using RSA cryptographic library to establish TLS connection with NSD Web Channels" published on the official NSD website in section EDF/EDI/CIPF.
9.2. Recommended CIPF
Description of CIPF to be installed on a client workplace with which web-service is to be accessed is given in given in the document "Instructions for using RSA cryptographic library to establish TLS connection with NSD Web Channels" published on the official NSD website in section EDF/EDI/CIPF.
For further information, EDI NSD participant should contact the NSD client tech support service (Tel.: (495) 956-09-34, E-mail: soed@nsd.ru).
9.3. Acceptable Operating Systems

The above CIPF can work on the following operating systems (for more information, please visit http://www.x509.ru/ccert_cl.shtml):

· Windows Professional XP SP2,

· Windows Server 2003 SP1,

· Windows Vista,

· Windows Server 2008,

· Windows 7,

· Windows Server 2008 R2 (x86 и x64).

There are no other restrictions on client software in terms of SOAP or WEB-service calling algorithms.

9.4. Certification

No certification of client software to access the WEB-service required.
10. Examples of SOAP Requests
10.1. Example of a SOAP Request Without Binary Data

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2010 (http://www.altova.com) by Elena (ZAO The National Depository Center) -->
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" schemaLocation="http://schemas.xmlsoap.org/soap/envelope/">

<!-- Header -->

<soapenv:Header>

<Security soapenv:actor="http://wslouch.micex.com:8080/WsLouch/WslService" xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#gostr34102001-gostr3411"/>

<Reference URI="#NRDRequest">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#gostr3411"/>

<DigestValue>

<!-- Digest (hash-function value) of the message body marked with NRDRequest, in Base64 -->

MIIB...OeA==

</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

<!—Value of a first digital signature with which element SignedInfo is signed-->

EEAZxWAQEFAD...QKEwVNSUNFWDEsMCoGA1UEAxM

</SignatureValue>

</Signature>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#gostr34102001-gostr3411"/>

<Reference URI="#NRDRequest">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#gostr3411"/>

<DigestValue>

<!—digest (hash-function value) of the body of the message marked with NRDRequest, in Base64 -->

MIIB...OeA==

</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

<!—Value of a second digital signature with which element SignedInfo is signed-->

EEAZxWAQEFAD...QKEwVNSUNFWDEsMCoGA1UEAxM

</SignatureValue>

</Signature>

</Security>

</soapenv:Header>

<!—Message body which is signed with digital signature -->

<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="NRDRequest">

<GetRcCreditorAssets xmlns="http://wslouch.micex.com/">

<PersonCode>EC0022400000</PersonCode>

<DebitorCode>EC0022400000</DebitorCode>

<CreditorCode/>

<CreditorFiCode>1/10VOZRP/16</CreditorFiCode>

<RateNoMore/>

</GetRcCreditorAssets>

</soapenv:Body>
</soapenv:Envelope>
10.2. Example of a SOAP Request with Binary Data Based on the MIME Technology
<!— HTTP general header with description of the delimiter of the SOAP message’s parts (MIME_boundary) and ID of the message root part <MIME_EXAMPLE> -->
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml; start="<MIME_EXAMPLE>"

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

<!-- ID of SOAP main message -->
Content-ID:<MIME_EXAMPLE>
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:wsp="http://wslouch.micex.com:8080/WsLouch/WslService" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/">

<!—Message header -->

<soapenv:Header>

<wsse:Security soapenv:actor="http://wslouch.micex.com:8080/WsLouch/WslService">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#" >

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#gostr34102001-gostr3411"/>

<Reference URI="#NRDRequest">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#gostr3411"/>

<DigestValue>

<!—Digest (hash function value) of the body of the message marked with NRDRequest, in Base64 -->

MIIB...OeA==

</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

<!—Value of a first digital signature with which element SignedInfo is signed-->

EEAZxWAQEFAD...QKEwVNSUNFWDEsMCoGA1UEAxM

</SignatureValue>

</Signature>

<Signature>

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#gostr34102001-gostr3411"/>

<Reference URI="#NRDRequest">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#gostr3411"/>

<DigestValue>

<!—digest (hash function value) of the body of the message marked with NRDRequest, in Base64 -->

MIIB...OeA==

</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

<!—Value of a second digital signature with which element SignedInfo is signed-->

EEAZxWAQEFAD...QKEwVNSUNFWDEsMCoGA1UEAxM

</SignatureValue>

</Signature>

</wsse:Security>

</soapenv:Header>

<!—Message body signed with digital signature -->

<soapenv:Body wsu:Id="NRDRequest">

<PutPackage xmlns="http://wslouch.micex.com/">

<PersonCode>EC0022400000</PersonCode>

<PackageId>12345</PackageId>

<PartNumber>1</PartNumber>

<PartsQuantity>5</PartsQuantity>

<!—Reference to ID attachment -->

<PackageBody href="package1"/>

</PutPackage>

</soapenv:Body>
</soapenv:Envelope>
--MIME_boundary

Content-Type: application/zip

Content-Transfer-Encoding: binary

<!-- ID attachement -->
Content-ID: <package1>
<!—attachment itself, binary package -->
--MIME_boundary

11. Examples of Electronic Document Packages Within the NSD EDI
General rules of signing and encrypting:

· Files are always signed with the sender’s digital signature. Digital signatures are embedded in files to be signed.

· Files are always encrypted with certificates of the recipient (or appropriate authorized persons) covering “Electronic Document Interchange of Closed Joint-Stock Company NSD” published in the relevant certificate network directory (both qualified and non-qualified ones) (hereinafter referred to “encrypted for the recipient)
· If the NSD is a recipient, certificates owners of which are indicated in the NSD EDI Application Form are used for encryption (related to provision of depository/clearing/repository operations) (hereinafter referred to “encrypted for the NSD).
· Following encryption the file will have a CRY extension.
11.1. Structure of a Document Package With a Transfer Order
Pursuant to the EDI Rules a package of documents with a transfer order shall be prepared in the following way:

· XML file with an order is signed with the Digital Signature of a Client initiating the order.

· The file is compressed into a .ZIP archive.

· The archived file is encrypted for the NSD.

The file is named this way:

	1st symbol
	2 – 4th symbol
	5 – 8th symbol
	File extension

	K
	DDM
(day, month: 1-9, A, B,C.)
	Unique number of the Electronic Document Package for the specified day
	ZIP (following encryption – CRY)

[image: image3.emf]XML

+

SGN

ZIP

CRY

11.2. Structure of a Transit Document Package
Electronic documents are transited through the NSD EDI if the sender and the recipient utilize CIPF of the same type (either certified or non-certified CIPF).

Pursuant to the EDI Rules, a transit document package shall be created in the following way:

If sent in an open envelope:

· WINF.XML file and each transit file (.DOC file in the picture) are signed with the digital signature of a Client sending the package.

· The file is compressed into a .ZIP archive.

· The archived file is encrypted for the NSD.

If sent in a close envelope:

· Transit files (.DOC file in the picture) are signed with the digital signature of a Client sending the package.
· Each signed transit file is encrypted for the recipient and signed again.
· WINF.XML file is signed with the digital signature of a Client sending the package.

· All resulting files are compressed into a .ZIP archive.

· The archived file is encrypted for the NSD.

The file is named this way:

	1st symbol
	2 – 4th symbol
	5 – 8th symbol
	File extension

	W
	DDM
(day, month: 1-9, A, B,C.)
	Unique number of the Electronic Document Package for the specified day
	ZIP (following encryption – CRY)

[image: image4.emf]Open envelope

Close envelope

CRY

CRY

ZIP

ZIP

WINF

+

SGN

DOC

+

SGN

WINF

+

SGN

+

DOC

+

SGN

CRY

+ SGN

11.3. Structure of a Document Package for the NSD Repository
Pursuant to the EDI Rules and the Terms and Conditions for Repository Services Provision a document package for the NSD Repository is created in the following way:

· Each file in the package (e.g. XML or PDF) is signed with the digital signature of a Client sending the package.

· The file is compressed into a .ZIP archive.

· The archived file is encrypted for the NSD.

The file is named this way:

	1st symbol
	2 – 4th symbol
	5 – 8th symbol
	File extension

	F
	DDM
(day, month: 1-9, A, B,C.)
	Unique number of the Electronic Document Package for the specified day
	ZIP (following encryption – CRY)

[image: image5.emf]XML

+

SGN

PDF

+

SGN

ZIP

CRY

12. Change List

	Change type
	Change description
	References

	Edition 1.10.15

	Change.
	Added a new valid value for the “Type” input parameter in the following functions:

· GetRegistrySince
· GetRegistryRecord
	GetRegistrySince – request for list of registered agreements of repository
GetRegistryRecord - request for data of registry of repository

	Edition 10.08.15

	Change.
	XML SUOPricesRecord Format is updated by adding the new fields “сred_code”, “creditor_short_name”, ”сollateral_code”
	GetSUOPrices – Request of Prices of Available Balances for Securities Basket Repo for the Collateral Accounting System

	Edition 22.06.15

	New
	Added support of simplified interface
	General Data
Authentication
Simplified interface
Electronic Document Package Structure
MIME Technology
Web-Service response
WEB-Service Functions (WEB-Service Methods) / General information
PutPackage – Document Package Transfer
GetPackage – Receipt of Document Package from NSD
GetPDFInvoice – request for invoice in PDF format
GetFile – request for attached file

	Change
	Clarified the list of possible values for asset type
	GetMarkedRests –Request of Marked Balance of Settlement Assets or Collateral

	Change
	All input parameters of the Request of Order Status became obligatory
	GetOrderState – Request of Order Status

	Change
	All input parameters of the Request for text of Master Agreement became obligatory
	GetMainAgreement - request for text of Master Agreement

	Edition 12.05.15

	Change.
	Format of MasterAgreements.xml and Format of registry.xml are updated by adding the new field “version”
	GetMainAgreements – Request for MA, RA, PRA
GetRegistrySince – request for list of registered agreements of repository

	Edition 05.02.15

	New
	Added functions description GetInvoiceList and GetPDFInvoice
	GetInvoiceList – request for list of Invoices in PDF format
GetPDFInvoice – request for invoice in PDF format

	Edition 19.06.14

	Change.
	Function GetMasterAgreements renamed into GetMainAgreements
	GetMainAgreements – Request for MA, RA, PRA

	Change.
	Function LoadAttachment renamed into GetFile
	GetFile – request for attached file

	New
	Added function description GetPersonCode
	GetPersonCode – check of Depository (repository) code by name of certificate owner

	New
	Added function description GetMainAgreements
	GetMainAgreements – Request for MA, RA, PRA

	New
	Added function description GetMainAgreement
	GetMainAgreement - request for text of Master Agreement

	Change.
	Changed obligatoriness of parameters of function GetMessage
	GetMessage - request for text of Depository message

	Change.
	Changed obligatoriness and order of calling parameters of function GetRegistrySince
	GetRegistrySince – request for list of registered agreements of repository

	Change.

	Function GetMasterAgreements renamed into GetMainAgreements
	GetMainAgreements – Request for MA, RA, PRA

	Edition 13.05.14 (takes effect from 1.09.2014)

	Change.
	Changed description of XML file SUOPricesRecord, returned by function GetSUOPrices (request for prices of available residuals on basket REPO for accounting system of collateral)
	XML SUOPricesRecord Format

	03.06.14 edition

	New
	Some terms and definitions used in interaction between customers and repository of NSD are included in the document
	PRA, MA, RA

	New
	The SOAP Fault element is included in the Web-Service response
	General Data
Web-Service response

	Edited
	The authentication algorithm is clarified.
	Authentication

	Edited
	The ErrorCode и ErrorDesc are excluded from output parameters of all functions.
	GetPersonCode Output parameters
GetRestsRepo Output Parameters
GetMarkedRests Output parameters
GetSUOPrices Output parameters
GetRcCreditorAssets Output Parameters
GetOrderState Output Parameters
InitTransferIn Output Parameters
PutPackage Output Parameters
GetTransferResult Output Parameters
GetPackageList Output Parameters
GetPackage Output Parameters

	New
	The Repository functions description is added in the document
	Repository functions

	Edited
	In sections «Connection to the WEB-Service» и «Recommended CIPF
» is given a link to document «Instructions for using RSA cryptographic library to establish TLS connection with NSD Web Channels »
	Connection to the WEB-Service
Recommended CIPF

	Edited
	The list of return codes was supplemented
	Return Codes and Error Descriptions

� There can be many binary attachments based on the MIME technology but we do not use this. Even if a package is split into several parts, a separate request is sent for each part.

� For more information on the marking, please visit � HYPERLINK "http://www.nsd.ru/common/img/uploaded/files/depo/103/28-31_slatvinskaya.pdf" �http://www.nsd.ru/common/img/uploaded/files/depo/103/28-31_slatvinskaya.pdf�.

� For more details, please visit � HYPERLINK "http://www.nsd.ru/ru/documents/inf_services/pred_inf_cb/" �http://www.nsd.ru/ru/documents/inf_services/pred_inf_cb/�.

� Compliant with ORACLE current settings.

� Without any guarantees from the NSD

41

_1435132719.vsd
XML
+
SGN

ZIP

CRY

_1466581616.vsd
Open envelope

Close envelope

CRY

CRY

ZIP

ZIP

WINF
+
SGN

DOC
+
SGN

WINF
+
SGN

DOC
+
SGN

+

CRY

+ SGN

_1435132721.vsd
XML
+
SGN

PDF
+
SGN

ZIP

CRY

_1435132717.vsd
SOAP запрос с вложением по технологии MIME

<!-- общий HTTP заголовок с описанием разделителя частей SOAP сообщения (MIME_boundary) и идентификатором корневой части сообщения <MIME_EXAMPLE> -->

--MIME_boundary

Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
<!-- ID основного SOAP сообщения -->
Content-ID:<MIME_EXAMPLE>

Envelope

--MIME_boundary

Content-Type: application/zip
Content-Transfer-Encoding: binary
<!-- ID вложения -->
Content-ID: <package1>

Вложение

--MIME_boundary

